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Lecture topics

* Input

* Evoformer module

* Structure module

* Output formatting and recycling
* Training regime and data

* Inference
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Input

* How is 3D structure encoded within the sequence?

compensatory
mutation
—

Nicoludis, J. M., & Gaudet, R. (2018). Applications of sequence coevolution in membrane protein biochemistry. Biochimica et Biophysica Acta (BBA) -
Biomembranes, 1860(4), 895-908. doi:10.1016/j.bbamem.2017.10.004



Input

* How is 3D structure encoded within the sequence?

o]

AR,

hrereey
-

seql W @ W A O 1
seq2 I @ A A O 1N
Uniref90 blast followed by
HMMER database generation 3 W @ N A 0 =
segqN. @ @ A A O

Structure database blast for
template generation

A Animal Trehalases

0.079 A

SO .. o X .v:'(“
SR Y
0078 A -
A
[y g .
<

Bacterial Trehalases

seq seq2

> u>



Evoformer module

48 blocks (no shared weights)
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Conservation, trends among sequences

Self-attention gives context clues to

importance across the sequence, as well as
the relation between difference sequences.

Pairwise residue co-information

Pair representation to notice context-

related clues, such as coevolution to gauge
structural closeness



Evoformer module

* Problem: How do you
make a computer
understand the contact
network from a sequence?



Evoformer module

* Problem: How do you * Problem: How do you
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Evoformer module

* Problem: How do you
make a computer
understand the contact
network from a sequence?

* STREVKLR
* LLVEILVAAG

* Problem: How do you
understand a meaning
from a seqguence of
letters?

* Walk by the river bank vs.
e Get cash from the bank



Evoformer module

* Problem: How do you
make a computer
understand the contact
network from a sequence?

* STREVKLR
* LLVEILVAAG

* Language models and suitability
* Self-attention networks

* Problem: How do you
understand a meaning
from a seqguence of
letters?

* Walk by the river bank vs.
e Get cash from the bank



Evoformer module

L. Input eabeddings

-
/"

* Language models and suitability
* Self-attention networks
* Embedding space

Wf\lk by the river bank

[000010000] One-hot encoding
l Wy *o.h.e

[0.20.30.40.10.80.7] Vy: First embedded word ("walk”)

softmax(V «VT) xV

Attention(V) = \/di%(v)



Evoformer module

* Language models and
suitability

e Self-attention networks

* Query, Key and Value (variable
embedding)

Walk by the river bank
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Structure module

b Pair representation Corresponding edges c Triangle multiplicative update Triangle multiplicative update Triangle self-attention around Triangle self-attention around
(r,r.c) in a graph using ‘outgoing’ edges using ‘incoming’ edges starting node ending node
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Structure module

; 9 4 ®
Pair Xl 0 o ¢
representation Wo ©
(r,r,c) o g
0(,‘*‘ ‘
°
d - I 8 blocks (shared weights) ?
Predict X angles
and compute all
atom positions
\
@ [Single repr. (r,c)| — mgziﬁle lﬁl Single repr. (r,c) ! —_—
Predict relative
rotations and
translations
£
A 4 —_— 1
- o/ N a=I
Backbans fross Backbone frames
(r, 3x3) and (r,3)
(initially all at the origin) \_ (r, 3x3) and (3) J

3D representations iteratively built from the evoformer pair representations with the single representation as
input.

‘

"Rapidly develop[s] and refine[s] a highly accurate protein structure with precise atomic details. '

Breaking the chain structure (forbidden in previous methods) and putting substantial weights on pairs from
evoformer (requires evoformer to provide all information)

lterative refinement using recvcling



Structure module

* Invariant Point Attention (IPA)

* The invariance comes from that the
lobal transformation cancels out in
the affinity computation, since L2-
norm of a vector is invariant under
rigid transformations.
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Recycling

* Efficiency

 Convergence properties
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Training regime and data preprocessing

* For evaluation on recent PDB se?uences (Figs. 2a—d, 4a, 5a), we used a copy of the PDB downloaded 15
February 2021. Structures were filtered to those with a release date after 30 April 2018 (the date limit for
inclusion in the training set for AlphaFold). Chains were further filtered to remove sequences that consisted
of a single amino acid as well as sequences with an ambiguous chemical component at any residue position.
Exact duplicates were removed, with the chain with the most resolved Ca atoms used as the representative
sequence. Subsequently, structures with less than 16 resolved residues, with unknown residues or solved by
NMR methods were removed. As the PDB contains many near-duplicate sequences, the chain with the
highest resolution was selected from each cluster in the PDB 40% sequence clustering of the data.
Furthermore, we removed all sequences for which fewer than 80 amino acids had the alpha carbon resolved
and removed chains with more than 1,400 residues. The final dataset contained 10,795 protein sequences.

* The procedure for filtering the recent PDB dataset based on prior template identity was as follows.
Hmmsearch was run with default parameters against a copy of the PDB SEQRES fasta downloaded 15
February 2021. Template hits were accepted if the associated structure had a release date earlier than
30 April 2018. Each residue position in a query sequence was assigned the maximum identity of any
template hit covering that position. Filtering then proceeded as described in the individual figure legends,
based on a combination of maximum identity and sequence coverage.

* The MSA depth analysis was based on computing the normalized number of effective sequences (N.) for
each position of a query sequence. Per-residue N.¢ values were obtained by counting the number of hon-
gap residues in the MSA for this position and weighting the sequences using the N+ schemeZé with a
threshold of 80% sequence identity measured on the region that is non-gap in either sequence.


https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2

Inference reasoning

Recycling iteration 0, block 01
Secondary structure assigned from the final prediction



Part 2: Bioinformatics and generative
modelling
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General properties

* Black box appproach

* Probability and generative capabilities

* Feature importance
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HMMs

p(ye|xt) observation probability
p(x¢|xe—1) transition probability
T—1 T

p(X,Y) = p(x1) H P(Xe+1]Xt) H p(ye [ xer)
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HMMs - applications

e Sequence bioinformatics
* MSA representation as a sequence of strings
* MSA representation as a sequence of source outputs
* Every sequence is a result of a random walk between sources
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HMMs — modelling choices

* How many sources?
* Initialization?

* Transition matrix helps define prior
* Optimization algorithm

 EM algorithm



HMMSs for MSA generation

* HMMer

* Distributive learning
* Batches
e Bayesian learning
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EM algorithm

* E-step:
* Evaluate the expectation
value of the observations

* M-step:

* Given the source distribution,

calculate the optimum
parameter space

Expectation Maximization (EM) Algorithm
log of expectation of P(x|z)

\‘ .
Goal: 6= argznaxlog(z})(x.z | 9)) FEX])=E[f(X)]

expectation of log of P(x|z)

1. E-step: compute \
E__|x‘9(,)[log(p(x,zlﬁ] Zloo (x.z|0)) (]\ (9(’))

2. M-step: solve
et — argmaleog(p(ﬁx,l | 9))}’(1 | Xﬂm)

e z



Autoregressive models

e Lab introduction

Data — MSA of Autoregressive model

homologous sequences P(ai,...,ar)

{(CLT, s aT)}m:l,...,M maximum - = HP(ailai—la - al)

likelihood i
e
@~O=0w

Mutational prediction Contact prediction Sequence generation
single-site mutation a; — b; double mutation a; — b;,a; — b; sampling from P(ay,...,ar)

AE(CLZ — bz) AAE(O,@ -2 bi,aj = b_y) {( ina '"vbzn)}m:l,...,M’




Deep Generative ML models

GAN 2014 DCGAN 2016 StyleGAN3 2021



eep Generative ML models

A sufficiently complex neural networks can
model any regression

* Training

Random noise

Generator

Deconvolutional Network (DN)
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GANSs

* Neural Networks

* Training

Random noise

Real faces

Generator

Deconvolutional Network (DN)

-@

Generated faces

5

Discriminator

Deep Convolutional Network (DCN)

Fake

Real



Validation techniques

 However, as you imply, we can additionally asses the ability of the
generative algorithms in modelling the underlying process that generates
data. A commonly used group of metrics for this is "information theoretic
scores" that derive from the idea of likelihood (log-likelihood). Below are
some well-known information theoretic scores:

e 1- log-likelihood (LL) score

e 2- minimum description length (MDL) score
* 3- minimum message length (MML) score

e 4- Akaike Information Criterion (AIC) score

e 5- Bayesian Information Criterion (BIC) score

* Note that 2, 3, 4, and 5 use some complexity penalisation factor over the LL
score. This is good practice to combat over-fitting.



https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Minimum_description_length
http://en.wikipedia.org/wiki/Minimum_message_length
http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Bayesian_information_criterion
http://en.wikipedia.org/wiki/Overfitting

Applications in Life sciences

* Sequence analysis
* Face recognition
* Data augmentation

 Sample generation



