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Today's lecture

» Biolmage analysis: definition

» Deep learning for image processing
« Segmentation

» Considerations about DL
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How many cells can we counte

Computational image

processing:

 Precise

« Reproducible
» Transferable

« Automatic - FAST




Digital images

A digital image is a mapping of intensities from a 2D grid of (uniformly spaced) discrete points, into a set

of numerical values. The grid elements are called pixels.

red intensity
green intensity
blue intensity




Biolmages: biological information given by numbers

Raw data Metadata

Codifies the information contained in the image Set of text data providing additional

information about the image.

< BIO-FORMATS

« Imaging modality

« Objective

« Magnification

» Resolution or Pixel/Voxel
size (microns, mm)

«  Number of channels

« Excitation spectrum

« Information about the

patient




Digital (bio)-image analysis




Image processing

Image Processing is any form of data processing for which the input is an image — the output

is not necessarily an image.
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(Classical) image processing tasks

(1) Segmentation (2) Object detection (3) Object tracking (4) Image registration
Input NN CAM
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Blolmage analysis
Collection of image processing techniques to extract numerical information from scientfific images
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Modeling

s

Analytics

Knowledge

Visualization

Recognition

E. Meijering et al., Nature Biotechnology 2016
E. Meijering, 2020
Vladimir Uiman et al., Nature Methods, 2017




Deep learning:

an extremely hot topic in the field &



The deep learning landscape for microscopy imaging

Segmentation
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Resolution enhancement & restoration

Subcellular dynamics and interactions of mitochondria and ER
during mitosis visualized via 3D ZS-DeconvNet

» & Imaging modality: LLSM
Specimen: Hela cell
Labelled structure: Mito, ER, and chromosome

Nat
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Data driven microscopy
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Why does deep learning pose a new paradigmye
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Why does deep learning pose a new paradigmye

- i

Classical
algorithm

What if the system could learn

automatically from the data®@
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Why does deep learning pose a new paradigmye

Classical
algorithm

Invasive Ductal Carcinoma

R Fls

Non - Invasive Ductal Carcinoma
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Why does deep learning pose a new paradigmye

Classical
algorithm

Deep Learning
algorithm

R. Henriques
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What are (convolutional) neural networkse

Full-size image
(256x256

Image segmentation convolutional neural network arquitecture (2D U-Net)

Convolutional la_\'er
(3x3x3)

D ownsamphng

Output of
the convolutions

(3x256x256)

(2x2)

Convolutional layer
(9x3x3)

(3x128x128)

L

DA

Kernels

of size 3

Output of

the convolutions

(9x128x128)

Gbmez de Mariscal, E. et al., NEUBIAS Springer, 2022
Olaf Ronneberger, Philipp Fischer, Thomas Brox; arXiv 2015

Downsamplj

Upsamph'ng

(2x2)

(9x128x128)

Convolutional layer
(4x3x3)

Kernels
of size 3 Output of

the convolutions

(4x128x128)

Upsampling

(4x256x256)

Convolutional layer
(3x3x3)

Kernels
of size 3
Output of
the convolutions
(3x256x256)




Convolutions
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Convolutions

Source pixel

(-1x3)+(0x0)+(1x1)+
(«2x2)+(0x6)+(2x2)+
(<1x2)+(0x4)+(1x1) =-3
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Destination pixel

Spatial filtering

Convolutional kernel: determines de feature to enhance
19



Capacity to guantify and enhance features of
interest in the image

Convolutions

= Filtered images and image filters can be combined in multiple ways

What if the system could learn the optimal
combinations automatically from the data®e

20



What are (convolutional) neural networkse

Source pixel

Convolutional kernel: determines de feature to enhance
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(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3
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Trainable filter (convolutional layer)

W00 WOlb WOZ
WlO Wll W12
WZO W21 WZZ

Note: Each unit in the kernel will have
its weight, but each convolutional
filter will also have a bias:
CxX=W®x+b,

where x is an input image

21



The learning process

Supervised Generative approach (unsupervised)
‘ N A NN
\ o \ 1N ;
! _ r MY \ W7 f7
w ¥ - D /£ = { <
Low quality Inferred High quality Low quality High quality

Self-supervised Semi (weakly) - supervised

Compare ]
.“ n - -‘.fﬂ \ .H\.“ k_/ —L:‘f. u‘j‘
¥, L ; i /i
s " VAR &
Low quallty Degraded Inferred

Weak labels Instance segmentation

E. Gomez-de-Mariscal, et al. "Harnessing Artificial Inteligence To Reduce Phototoxicity in Live Imaging." arXiv (2023). 22



Supervised CNNs training

a—
a—
WlO Wll W12 + b

Trainable filter
Input image Output
(convolutional layer)

23



Supervised CNNs training

Compare the
images with a
loss function

a

a—
a—
WlO Wll W12 + b

Trainable filter
Input image Output Ground truth
(convolutional layer)

Update w;; and b

1

The update is proportional to the learning rate

24



Supervised CNNs training

Stop training

a—
a—
WlO Wll W12 + b

Trainable filter
Input image Output Ground truth
(convolutional layer)

25



Supervised CNNs fraining: backpropagation

- Optimization - Gradient descent
- Gradients computation - Backpropagation (use the chain rule for derivatives):
After each forward pass through the network, a backward pass is performed to adjust the model’s

parameters (weights and biases) according to the error made by the output of the network.

S B od . . ¥ I
Loss function: quantitative measure of the error Ildllllllg__, n q """ +»
. . progress. . .
Learning rate: proportion used to update the
parameters on each pass .
Most used loss functions: g\ 3 ‘
- Mean Squared Error (MSE or L1) NNPERCA Q o1
- Mean Absolute Error (MAE or L2) O N AONHNNLL
- Binary Cross Entropy (Categorical cross 81 \ Q."__;x-‘-:\- O
entropy) 5 TEINDT RO
3/ D O
J -', () P 8 4
. Qe 8
Infroduced in 1960s =/, & 3
Popularized by Rumelhart, Hinton and Williams in “Learning . ot '

representations by back-propagating errors”, 1989
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https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

Supervised CNNs training

Pairs of inputs and desired outputs (i.e., ground truth)

, « - f(X) Loss function
PR SN (differentiable)
R AT T
s \:'.. I ‘.'\‘ \:’
Input Ground truth
\ \\ '-_'7'_ . 7‘7. . )
A_ NN e N Compare the \\ NN\
II—JII D(> e output with the W - .
e Ta N, ground truth
- ‘#‘../.’. - \ :f
Process the input images AN

b) They look the
same:

Trained network
a) The output and ground truth are different: ready to be used

Update the convolutional filters and keep training

27



Training a neural network

0.01 Once the algorithm has “seen” all the training data
Y |
c The loss function has converged
0O
553 What about all the new data that IL\eed to analyzee
« \ /\ The method cannot learn more
@)
o |
\_
) Yadh 20 SN
0 1 2 3 4105 1000 2000

Epochs



raining a neural network: datao

]

The method learns from this dataset
- Large
- Heterogeneous
- Covers dll the possible events in the problem

Independent of the
training set
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Training a neural network: data

0.01
X Loss value for the validation set
IS
g
0 ] 10 1000 2000

Epochs



Training a neural network: data

If the method fails in the validation If the test processing is as good as in the
data, then it is called overfitting. training data, then we say that it can
o generalize. ¢

You: how do | prevent overfittinge

Esti & Wei: more data

You:@&




Training a neural network: data

The bigger the data the better Data augmen’ra’rion

— Cover areal scenario

data in image classification

image classification

It is always the number 6
\» Ll

¢ a0

Christopher M. Bishop, Pattern Recognition and Machine Learning \J d




Training a neural network: data augmentation in
MICroscopy

|.  The ground fruth also needs to be augmented with the same fransformation:s.

Il. Image transformations need to preserve the meaning and biophysical properties of the data.

Geometrical transformations A\ Non-linear (elastic) transformations A\ Signal artifacts:
. . (shape changes) .
Linear tfransformations (preserve shape) - Noise
+ Zooming
« Rotation - Confrast
, + Shearing .
« Translation - Blurring
Linear transformations Non-linear transformations Adding noise

:‘“.v‘ j:""
et S

Original patch Rotation + Shift Rotation Shearing

Original image Nojsy



Segmentation with CNNS: patches and data
augmentation

Make sure that artifacts are not introduced when augmenting the patching

Results on the learning process with different strategies for data
augmentation

No-sampling
Default DA
Sampling 1
The augmented patch Sampling 2
has cells with

uncommon shapes
-4
A ‘
0 250 500 750 1000 1250 1500

Only one patch has a cell Epoch

No-sampling
Default DA
Sampling 1
Sampling 2

Average val. accuracy in the cell class
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E. Gémez de Mariscal et al., arxiv 2021



Training a neural network: datao

Data collection (&curation) is a

expensive.

Small datasets for bioimage analysis

Fine tuning Transfer learning
Pretrained model ~ Same task, similar Classification
forboundary  m=llip features, different

segmentation

+

Segmentation

Classification

-

Pose estimation

A. Mathis, et al., Neuron 2020
A. Wolny et al., elife 2020

W. Ouyang et al., bioRxiv
2022



Deep learning systems

Model architecture

U-Net

ResNeft
MobileNetV2
(cycle) GANS

DenseNets

Loss function

Mean Squared Error
Mean Absolute Error
(binary)cross-entropy
Focal loss

Dice loss

Optimisation

« Stochastic gradient
descent
« ADAM

Data (curation)

Labelled masks
Keypoints&landmarks
Paired images
(high&low SNR)
Bounding boxes

Tracks

Influence the final performance and behaviour of your system

A. Mathis, et al., Neuron 2020

36




Deep learning systems

Model architecture Loss function Optimisation Data

Each configuration affects the inference speed, training data requirements, memory demands.

Task specific:
2D, 3D, time lapse, multichannel.
* Image-to-image vs.image-to-vector processing.

e Criterion needed to learn: regression vs classification.

A. Mathis, et al., Neuron 2020 37



Deep learning systems

Are pretrained models to
use directlye

Identify the sample
type(s) and features
you need to analyse

Questions to consider: Select from an
What features give me available
the info | need? foolbox
Live or fixed?
Highly accurate?
Mulfichannel?

A. Mathis, et al., Neuron 2020 38



Segmentation

39



Segmentation

Formal definition: partitioning of the image domain Q into several (usually disjoint) regions Q;

Q= Ui'Ql" .Q.l'n.Qj= @,Vl’?&j

P. Coupé et al., Neurolmage 2011
40



Segmentation

Instance segmentation
(Detection + segmentation)

Semantic segmentation

[ “background”, None ] \

[“Cat’,)"1"]

[“Cat”,"2"]

Detection Binary segmentation [ “pavement’, None]

Panoptic segmentation
(Instance + Semantic segmentation)

https://analyticsindiamag.com/semantic-vs-instance-vs-
panoptic-which-image-segmentation-technique-to-choose/ 41



Segmentation

The information is partitioned in different segments to simplify its representation info something

that is easier to analyze

Cell counting
" ﬁ,ﬁ'gﬂ;,.,'g Determine anatomical regions (telencephalons) to measure cell activity

' : =
Lo ' !l,f. & (proliferating pHH3+ cells)
'\ &

aq p‘\“'
: PSS 'l
J '.{‘ '. ‘\‘ .‘\

F. Lux & P. Matula, arXiv, 2020

Morphology assessment

Thomas Naert, Development, 2021

Data: Cell Tracking Challenge (Ulman, V., et al., Nat 42

Methods 2017), Traning: Jodo Luis Soares Lopes (EPFL)



Segmentation: Thresholding is the most basic form of
obtaining binary images

Threshold all the values smaller than 128



Segmentation with CNNS: U-Net encoder-decoder for
binary segmentations

Skip connections:
Take the output of each level in the encoder path and copy it with the input of the decoder path.
It helps preserving high resolution details during decoder process.

=»conv 3x3, RelLU
copy and crop

§# max pool 2x2

Olaf Ronneberger, Philipp Fischer, Thomas Brox; U-Net: Convolutional Networks for Biomedical Image Segmentation; arXiv 2015 44



Segmentation: alternative strategies

Weighted loss functions Use different labels

input image w(x)

(dq(x) + do(x))? 2 [110085 el 3 https://github.com/maweigert/neubias_academy_stardist
w(X) = wo - exXp (*%) 5 W N Schmidt, Weigert et al 2018
202 : \ .

Olaf Ronneberger, ef al., arXiv 2015 < . NS Instance segmentation with ROI classification
( 2 : ' and segmentation

Limitations of binary image segmentation
- Will not work with dense, packed or
clustered objects.

- Additional labels to split indpendent

RolAlign (

" K. Heetal, arXiv2018

objects

Mask R-CNN AP =0.911

- Overlapping objects cannot be

represented in one single mask ' Neural Network B Graph Partitioning

. Wolny et al., eLife 2020

- ROIs need to be predefined and do

not scale well to cellular shapes




Segmentation: learn deterministic features rather than
discrete labels

StarDist

https://github.com/maweigert/neubias_academy_stardist
Schmidt, Weigert et al 2018

Cellpose

v y 255 - |
.'._'. d y .
f X
i .

https://www.cellpose.org | <.,
D ‘
Stringer, Wang, R
\
e

Michaelos, Pachitariu,
Nature Methods, 2021

46




Segmentation with CNNS: image preparation and
features

Biomedical images can get really large (up to TB for electron microscopy) - GPU memory a major limitation

Divide images into
patches 2>increase How big?e = Receptive field of the network = it needs to have enough information to learn and discriminate
the training data
elgle]e]111a%
(a) Depth-wise receptive field

Stage 0

- O o m = o=

(b) Layer-wise receptive field

Max pooling ™) Avg unpooling Conv Receptive field

TissueNet,
Greenwald, Miller et al 2021



Segmentation with CNNS: image preparation and
features

Image processing task: segment cells in mitosis Result: empty
masks

o°

7271 pixels

Training patch size
for StarDist

512 x 512 pixe

7271 pixels

L . . Schmidt, Weigert et al 2018
Original videos: 4x4 field of views (x43) chmicl velgerterd

Pixel size = 0.108 um/pixel



Segmentation with CNNS: image preparation and
features

A way to understand could be... asking what is the perfect distance to decipher the scenes of Claude Monet’s art

- enough as to get the context with still meaningful details




Segmentation with CNNS: image preparation and
features

A way to understand could be... asking what is the perfect distance to decipher the scenes of Claude Monet’s art

- enough as to get the context with still meaningful details

3




Segmentation with CNNS: image resolution and its effect
INn segmentation
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Segmentation with CNNS: image resolution and its effect
INn segmentation

Basic definition: Number of pixels in an image Pixel size: physical size (length and width)

covered by one pixel

16 cm
-
)
~O
64x64 128x128 512x512
Digital Sampling Pixel Quantization
I = B 0
« The pixel size influence the amount of ' ) 248 245[210] 93 [ 81 [ 120 97 [193]254
| . | % ol el
details for a given field of view. g g - | 241 [s16]v18]sorlesafssef se | o2 [ves
T - 2 3 n P 2 O
« Detectors also limit the size of the finniest : 234]106] 84 | 125] 87 | 108] 125] 106] 204
. : 241 [202]02]132] 75 | 73 [141 246252
detail that we can acquire yve 263 252] 24| 208] 178 198]242]250[245]

T 0 2




Segmentation with CNNS: image resolution and its effect
IN quantification

Full field-of-view Nucleus Mitochondria Pixel size = 49 nm

Intensity (
)
3

i &

#cells=6 Area = 140pm? Peak separation =442nm v 05 70 TS

cells =36 Area = 137pm? Peak separation = 162nm ' 55 5 T % gmggﬁ:gs)l):é;hw ggﬁ'njj.();%gso Distance (pm)

Ad (theoretical) = 670nm Circ.= 0.757 Beyond resolving power -
Ad (measured) = 1700nm Round. =0.748 impossible measurement!

Intensity (a.u.)

wv
o
(=)

Distance (um)

Intensity (a.u.)
>
[=]
o

®
3

&

#cells=3 Area = 156pm? Peak separation =450nm 0% 0 G
Ad (theoretical) = 207nm Circ.=0.794 Distance (um)
Ad (measured) = 350nm Round. =0.747

3
&
-
=
v
c
[
ot
£

#cells=10 Area = 145um? Peak separation = 313nm . 1.0 15
Ad (theoretical) = 500nm Circ. = 0.698 Distance (um)
Ad (measured) = 635nm  Round.=0.751

)
)
S
3

100x
(+1.5x)
1.45NA
oil

(=]
(=3
(=]

Intensity (a.u.
o
S

Intensity (a.u.)

*

#cells=7 Area = 161um? le, noisy peak ! 05 1.0 15
Ad (theoretical) = 500nm Circ.=0.618 Distance (um)
Ad (measured) = 662nm  Round. =0.746

TREN I e -
#cells=25 Area = 159pm? Peak separation =450n ‘ 0% 0 75
Ad (theoretical) = 207nm Circ. = 0.836 Distance (um)
Ad (measured) = 383nm Round. =0.752

S. Culley et al., Made to measure: An introduction to quantifying microscopy data in the life sciences, Journal of Microscopy 2023 53



Segmentation with CNNS: image preparation and
features

Intensity values vary with the physical properties of the data, the calibration of imaging devices or the natural variability of the

sample . :
Non-normalized images Before normalization

MNIST data: black and

white pixels

O1a345b789 -3
Olazdyser7¢€9
O] r324569% 6§ 9
O0O)234567 89
D ' 2 3 q s 9 7 8 qi €:1/3 t:1/10 - CHO_test_EG-MD.nd2 (series 12) (75%)
0 , 2 3 L} S 6 7 g qi "C.1/3 :7/10 - CHO_test_EG-MD.nd2 (series 12)"; 72.15x81.58 microns (666x7] "c:1/3 t:1/10 - CHO_test_EG-MD.nd2 (series 12)" 72.15x81.58 microns (666x7}
012%45%618 4!
wéw,& P
Common strategies: 4 3,
L 7
- Intensity projection: Clip the dynamic range of values to the [0, 1] range }ﬁ,f i; Al ¢
Y ,-"" &1 g,
- Standardization with the mean and standard deviation N Q A
- Percentile projection (common in fluorescence): remove outliers (i.e., noise and artifacts) 5 e ATy
from the intensity distribution (extremes in the tails) and clip to the [0, 1] range.

- Normalize w.r.t. the entire population (training data)



Evaluation of the model performance - Accuracy @@

Intersection of A & B Hausdorff distance

sup inf d(x,y)
e X YEY

“
division

Union of A & B

Jaccard (A, B) = AnB / AuB =

Result of Model 1 Dice (A, B) = 2*AnB / (A+B)z

Quantify the accuracy

« Precision, recall, F1 (= (2*precision*recall) / (precision + recall))
« Jaccard index / Dice coefficient
« Hausdorff distance

« Mean Squared Error (L2)

« Structural similarity index (SSIM)

« Biologically relevant measures (cell densities, fluorescence intensities, diameters)

Prediction loU Matched Prediction loU > Threshold € (0,1)

https://github.com/maweigert/neubias_academy_stardist
Schmidt, Weigert et al 2018
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Biological relevance of the segmentation results

Wl Real object [ Fuoeseneiesy |
) rccuacy (overian) O o e e

\
<% Length, curvature, diameter

56



C Science > Comp Vision and Pattern Recognition
[Submitted on 3 Jun 2022 (v1), last revised 30 Jun 2023 (this version, v6)]

Metrics reloaded: Recommendations for image analysis validation

Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Biittner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, " o " o e o n " o o
-na Mater=riel @ Rel o . Minu B, Hizaol, Forlan 54 vangelia Lhristodouou, Be ' +Jens : Fingerprint name Fingerprintillustration Fingerprint description
Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, A. Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann,
Doreen Heckmann-Nétzel, A. Tim Radsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, r
Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. |mage processing category Semantic segmentation (SemS): assignment of one or multiple category labels to
Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan identified by category mapping each pixel.
Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin
Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G.M. Moons, Henning Mdller, Brennan Nichyporuk, Felix
Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sanchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers,
Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben Van Calster, Gaél Varoquaux, Paul F. Jager Domain interest-related properties (selection)
The biomedical application requires exact structure boundaries.
Example: seg ion for radiotherapy planning; knowledge of exact structure
(a) VARIOUS PITFALLS RELATED TO CHOICE OF VALIDATION METRIC Particular importance of structure h EE U b D s e SRy iy e
boundaries ;
;g i e Important: Overlap-based metrics do not measure shape agreement. In the case
Reference Prediction 1 Prediction 2 icti icti —
e il e Reference  Prediction1  Prediction 2 of complex shapes (high boundary-to-volume ratio) it is therefore typically
. I:| D L. o=t s E‘ advisable to set this property to TRUE.
| o o
INAPPROPRIATE - B o POORMETRIC Particular importance of structure ! The biomedical application requires accurate knowled‘ge of structure‘centers.
3 Example: cell centers are subsequently used for cell tracking and cell motion
CHOICE OF THE SELECTION center (e.g,, in cells, vessels) s
PROBLEM i i ! charac so false center should be supp d.
ject detected ¥ 3 objects detected DSC=0.80 >> DSC =050
CATEGORY I % o S n - q
>> DSC=0.79 Example - neglecting the small size of structures: . . Ref 1 Ref 2 Ref1Ref2 The reference annotation is typlcall){ only an approximation of the (forever un
Example - object detection confused with semantic segmentation: ; Single-pixel differences can hugely impact the metric scores, Compensation for annotation known) ground truth. It may be desirable to compensate for known uncertainties,
DSC is strongly biased towards single objects and is therefore not which is especially relevant given high inter-rater variability imprecisions requested - . n . such as intra-rater or inter-rater variability, by configuring the metric accordingly.
appropriate for measuring the detection of multiple objects and the non-deterministic nature of Al algorithms. This is only possible for some metrics.

.o .o .o (11
t‘z)? Example - inappropriate
I3 7 3 T ] :
aggregation scheme: Target structure-related properties (selection
. ,@ SZLFBL m W Hierarchical data structure is & ikl ; )

F:\?'SLngAAETTgI[\f Img1 . Img100 Img1 .. Img30 Img1 .. Img20 Img1 .. Img20 Img1 .. Img35 often neglected when . . =
D 05C,,,, =09 DOSC,, =05 DDSC,, =05 DDSC,, =04 BOSC,, ~08 X ‘f’[ﬁg:‘f‘;‘s")'g("“’ﬁ‘”‘;“"‘LI)“‘I‘:I'H Sma_” SizC of structures relative Structures of the provided class are only a few pixels in size.
[\ T r’; : d‘”cw”i s "v \bym . gf shopd to pixel size — Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.
2 DSC,,,,, = 0.6 per variable.
The target structures vary substantially in size, such that some structures are sev-
. g T o eral times the size of others.
:*'q(: Ya "al?' lity of st(rjl;cture BZES Example: polyps in colonoscopy screening, where some polys are several times the
within an image and/or | i
(b) ADDRESSED BY PROBLEM-DRIVEN METRICS RELOADED FRAMEWORK . g . EECHEIEE . . ) .
across images) { C ple: large organs, such as the liver or the kidneys, which are relatively
I:F:{, \ comparable in size across individual:
(1) PROBLEM FINGERPRINTING ENABLES MODALITY-INDEPENDENT METRIC SELECTION oo oo ooe oo

encoded in guides towards . .
@ _— o, Data set-related properties (selection)

The class prevalences differ substantially.

Driving biomedical problem Problem fingerprint Metric selection
2 Example: In a screening application, the positive class (e.g., cancer) may occur ex-
¢ Prul)l::m ﬁngcrpnnl: ‘cnmpsuldtc rc\cvjm properties J Uscrs}urc CdiuL;JlCd on p\lfdf\ls while b‘cmg guided Presence of class imbalance tremely rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be
of a driving problem in a structured manner. through the process of metric selection. exlremelymisleading‘

Examples: multiple images of the same patient, hospital or video.

‘ The test cases are hierarchically structured, indicating non-independence of test
Non-independence of test cases ﬁ- -t cases.

(2) APPLICATION TO COMMON USE CASES DEMONSTRATES BROAD APPLICABILITY (3) ONLINE TOOL GUIDES THE USER

Exal‘np/e P e .o e .o
input ’
images o . .
Algorithm output-related properties (selection)
Example  [spine(sag i | [Senuestn Possibility of algorithm output REd RIEd
outputs P88 s not containing the target r The algorithm may yield outputs in which not all classes are present.
structure(s)

“mduslon criterion: classification at image, object or pixel level J User-centric design



https://arxiv.org/abs/2206.01653

Considerations: The objective

Accuracy versus validity
Example:

High segmentation accuracy but

poor temporal consistency

— Limit object tracking

s Segmentation
BN Real object

’ Fluorescence average value

Length, curvature, diameter, shape

Patric Riley, Three pitfalls to avoid in machine learning, Nature 2019

Mistaken objective
Example:
Diagnosis of diabetic retinopathy.
Issues:
1. Discrepancy among doctors and non-valid
majority voting
2. Hiden real objective = “Should this patient

see a doctore”
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Considerations: Generalizability

DL models are extremely sensitive to pixel sizes (object size), imaging modalities, morphologies, cell types,

fluorescence channels...

-
P2 / L
, v \\\ ‘/ Generalizability is still an active and hot field of study
- - g with important open questions:
. « Isit because we lack enough training datae

FluoC3DLMDA231 PhC-C2DL-PSC
‘= + Should we get deeper models?

« Is it possible to have one single model for a specific

task regardless the data?

Usiigaci
V Ulman et al., An objective comparison of cell-fracking algorithms, Nature Methods 2017
Hsieh-Fu Tsai et al., Usigaci: Instance-aware cell fracking in stain-free phase contrast microscopy enabled by machine learning, SoftwareX 2019
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